Approximate Marginals in Latent Gaussian Models
نویسندگان
چکیده
We consider the problem of improving the Gaussian approximate posterior marginals computed by expectation propagation and the Laplace method in latent Gaussian models and propose methods that are similar in spirit to the Laplace approximation of Tierney and Kadane (1986). We show that in the case of sparse Gaussian models, the computational complexity of expectation propagation can be made comparable to that of the Laplace method by using a parallel updating scheme. In some cases, expectation propagation gives excellent estimates where the Laplace approximation fails. Inspired by bounds on the correct marginals, we arrive at factorized approximations, which can be applied on top of both expectation propagation and the Laplace method. The factorized approximations can give nearly indistinguishable results from the non-factorized approximations and their computational complexity scales linearly with the number of variables. We experienced that the expectation propagation based marginal approximations we introduce are typically more accurate than the methods of similar complexity proposed by Rue et al. (2009).
منابع مشابه
Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
We are concerned with Bayesian inference for latent Gaussian models, that is models involving a Gaussian latent field (in a broad sense), controlled by few parameters. This is perhaps the class of models most commonly encountered in applications: the latent Gaussian field can represent, for instance, a mix of smoothing splines or smooth curves, temporal and spatial processes. Hence, popular smo...
متن کاملApproximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothing-spline models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, and geostatistical models. In this paper we consider app...
متن کاملLatent Tree Copulas
We propose a new approach for estimation of joint densities for continuous observations using latent tree models for copulas, joint distributions with uniform U (0, 1) marginals. Latent tree copulas combine the advantages of the parametrization of the joint density using only bivariate distributions with the ability to approximate complex dependencies with the help of latent variables. The prop...
متن کاملApproximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011